Matematika

Pertanyaan

Buktikan!
  cos A
    -       sin²A      =  cos A + sin A
1-tan A      cos A-sin A

1 Jawaban

  • 1) Left side = {(1/sinA) - sin A}*{(1/cos A) - cos A}

    2) Taking LCM and simplifying, left side = {(1 - sin²A)/sin A}*{(1 - cos²A)/cos A}

    = (cos²A/sin A)*(sin²A/cos A) = (sin A)(cos A)/1

    3) Since 1 = sin²A + cos²A, by trigonometric identity,

    Left side = {(sin A)*(cos A)}/(sin²A + cos²A)

    Dividing numerator and denominator by {sin A)*(cos A)} in the above,

    Left side = 1/[{sin²A/(sin A*cos A)} + {cos²A/(sin A* cos A)}]

    This simplifies to:
    1/[(sin A/cos A) + cosA /sin A)] = 1/[tan(A) + cot(A)] = Right side [Proved]

Pertanyaan Lainnya